Наши работы

Omut AI наследует исследовательскую команду T-Bank Research, в которой мы занимаемся созданием новых алгоритмов в AI

2024
2023
2022
Viacheslav Sinii
Alexander Nikulin
Vladislav Kurenkov
Ilya Zisman
Sergey Kolesnikov

In-Context Reinforcement Learning for Variable Action Spaces

ICML 2024
Подробнее
Stanislav Dereka
Ivan Karpukhin
Maksim Zhdanov
Sergey Kolesnikov

Diversifying Deep Ensembles: A Saliency Map Approach for Enhanced OOD Detection, Calibration, and Accuracy

IEEE ICIP 2024
Подробнее
Yaroslav Aksenov
Nikita Balagansky
Sofia Maria Lo Cicero Vaina
Boris Shaposhnikov
Alexey Gorbatovski
Daniil Gavrilov

Linear Transformers with Learnable Kernel Functions are Better In-Context Models

ACL 2024
Подробнее
Ilya Zisman
Vladislav Kurenkov
Alexander Nikulin
Viacheslav Sinii
Sergey Kolesnikov

Emergence of In-Context Reinforcement Learning from Noise Distillation

ICML 2024
Подробнее
Alexey Gorbatovski
Boris Shaposhnikov
Alexey Malakhov
Nikita Surnachev
Yaroslav Aksenov
Ian Maksimov
Nikita Balagansky
Daniil Gavrilov

Learn Your Reference Model for Real Good Alignment

Preprint
Подробнее
Denis Tarasov
Vladislav Kurenkov
Alexander Nikulin
Sergey Kolesnikov

Revisiting the Minimalist Approach to Offline Reinforcement Learning

NeurIPS 2023
Подробнее
Denis Tarasov
Alexander Nikulin
Dmitry Akimov
Vladislav Kurenkov
Sergey Kolesnikov

CORL: Research-oriented Deep Offline Reinforcement Learning Library

NeurIPS 2023
Подробнее
Vladislav Kurenkov
Alexander Nikulin
Denis Tarasov
Sergey Kolesnikov

Katakomba: Tools and Benchmarks for Data-Driven NetHack

NeurIPS 2023
Подробнее
Maksim Zhdanov
Ivan Karpukhin

Catching Image Retrieval Generalization

Preprint
Подробнее
Alexander Nikulin
Vladislav Kurenkov
Denis Tarasov
Sergey Kolesnikov

Anti-Exploration by Random Network Distillation

ICML 2023
Подробнее
Sofia Maria Lo Cicero Vaina
Nikita Balagansky
Daniil Gavrilov

Diffusion Language Models Generation Can Be Halted Early

Preprint
Подробнее
Daniil Gavrilov
Nikita Balagansky

Ahead-of-Time P-Tuning

Preprint
Подробнее
Alexander Nikulin
Vladislav Kurenkov
Ilya Zisman
Artem Agarkov
Viacheslav Sinii
Sergey Kolesnikov

XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX

NeurIPS 2023
Подробнее
Intrinsically Motivated Open-ended Learning Workshop
Vladislav Kurenkov
Sergey Kolesnikov

Showing Your Offline Reinforcement Learning Work: Online Evaluation Budget Matters

ICML 2022
Подробнее
Nikita Balagansky
Daniil Gavrilov

PALBERT: Teaching ALBERT to Ponder

NeurIPS 2022
Подробнее
Ivan Karpukhin
Stanislav Dereka
Sergey Kolesnikov

Probabilistic Embeddings Revisited

Preprint
Подробнее
Mark Rofin
Nikita Balagansky
Daniil Gavrilov

Linear Interpolation In Parameter Space is Good Enough for Fine-Tuned Language Models

Preprint
Подробнее
Stanislav Dereka
Ivan Karpukhin
Sergey Kolesnikov

Deep Image Retrieval is not Robust to Label Noise

CVPR 2022
Подробнее
Open-Domain Reasoning Under Multi-Modal Settings Workshop
Denis Tarasov
Vladislav Kurenkov
Sergey Kolesnikov

Prompts and Pre-Trained Language Models for Offline Reinforcement Learning

ICLR 2022
Подробнее
Workshop on Generalizable Policy Learning in Physical World
Askhat Sitdikov
Nikita Balagansky
Daniil Gavrilov
Alexander Markov

Classifiers are Better Experts for Controllable Text Generation

ACL 2022
Подробнее
Workshop on Transfer Learning for Natural Language Processing
Ivan Karpukhin
Stanislav Dereka
Sergey Kolesnikov

EXACT: How to Train Your Accuracy

ICML 2022
Подробнее
Topology, Algebra, and Geometry in Machine Learning Workshop
Alexander Nikulin
Vladislav Kurenkov
Denis Tarasov
Dmitry Akimov
Sergey Kolesnikov

Q-Ensemble for Offline RL: Don't Scale the Ensemble, Scale the Batch Size

NeurIPS 2022
Подробнее
Offline RL Workshop
Dmitriy Akimov
Vladislav Kurenkov
Alexander Nikulin
Denis Tarasov
Sergey Kolesnikov

Let Offline RL Flow: Training Conservative Agents in the Latent Space of Normalizing Flows

NeurIPS 2022
Подробнее
Offline RL Workshop

Наши работы

Omut AI наследует исследовательскую команду T-Bank Research, в которой мы занимаемся созданием новых алгоритмов в AI

2024
2023
2022
Viacheslav Sinii
Alexander Nikulin
Vladislav Kurenkov
Ilya Zisman
Sergey Kolesnikov

In-Context Reinforcement Learning for Variable Action Spaces

ICML 2024
Подробнее
Stanislav Dereka
Ivan Karpukhin
Maksim Zhdanov
Sergey Kolesnikov

Diversifying Deep Ensembles: A Saliency Map Approach for Enhanced OOD Detection, Calibration, and Accuracy

IEEE ICIP 2024
Подробнее
Yaroslav Aksenov
Nikita Balagansky
Sofia Maria Lo Cicero Vaina
Boris Shaposhnikov
Alexey Gorbatovski
Daniil Gavrilov

Linear Transformers with Learnable Kernel Functions are Better
In-Context Models

ACL 2024
Подробнее
Ilya Zisman
Vladislav Kurenkov
Alexander Nikulin
Viacheslav Sinii
Sergey Kolesnikov

Emergence of In-Context Reinforcement Learning from Noise Distillation

ICML 2024
Подробнее
Alexey Gorbatovski
Boris Shaposhnikov
Alexey Malakhov
Nikita Surnachev
Yaroslav Aksenov
Ian Maksimov
Nikita Balagansky
Daniil Gavrilov

Learn Your Reference Model for Real Good Alignment

Preprint
Подробнее
Denis Tarasov
Vladislav Kurenkov
Alexander Nikulin
Sergey Kolesnikov

Revisiting the Minimalist Approach to Offline Reinforcement Learning

NeurIPS 2023
Подробнее
Denis Tarasov
Alexander Nikulin
Dmitry Akimov
Vladislav Kurenkov
Sergey Kolesnikov

CORL: Research-oriented Deep Offline Reinforcement Learning Library

NeurIPS 2023
Подробнее
Vladislav Kurenkov
Alexander Nikulin
Denis Tarasov
Sergey Kolesnikov

Katakomba: Tools and Benchmarks for Data-Driven NetHack

NeurIPS 2023
Подробнее
Maksim Zhdanov
Ivan Karpukhin

Catching Image Retrieval Generalization

Preprint
Подробнее
Alexander Nikulin
Vladislav Kurenkov
Ilya Zisman
Artem Agarkov
Viacheslav Sinii
Sergey Kolesnikov

XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX

NeurIPS 2023
Подробнее
Intrinsically Motivated Open-ended Learning Workshop
Alexander Nikulin
Vladislav Kurenkov
Denis Tarasov
Sergey Kolesnikov

Anti-Exploration by Random Network Distillation

ICML 2023
Подробнее
Sofia Maria Lo Cicero Vaina
Nikita Balagansky
Daniil Gavrilov

Diffusion Language Models Generation Can Be Halted Early

Preprint
Подробнее
Daniil Gavrilov
Nikita Balagansky

Ahead-of-Time P-Tuning

Preprint
Подробнее
Vladislav Kurenkov
Sergey Kolesnikov

Showing Your Offline Reinforcement Learning Work: Online Evaluation Budget Matters

ICML 2022
Подробнее
Stanislav Dereka
Ivan Karpukhin
Sergey Kolesnikov

Deep Image Retrieval is not Robust to Label Noise

CVPR 2022
Подробнее
Open-Domain Reasoning Under Multi-Modal Settings Workshop
Nikita Balagansky
Daniil Gavrilov

PALBERT: Teaching ALBERT to Ponder

NeurIPS 2022
Подробнее
Denis Tarasov
Vladislav Kurenkov
Sergey Kolesnikov

Prompts and Pre-Trained Language Models for Offline Reinforcement Learning

ICLR 2022
Подробнее
Workshop on Generalizable Policy Learning in Physical World
Askhat Sitdikov
Nikita Balagansky
Daniil Gavrilov
Alexander Markov

Classifiers are Better Experts for Controllable Text Generation

ACL 2022
Подробнее
Workshop on Transfer Learning for Natural Language Processing
Ivan Karpukhin
Stanislav Dereka
Sergey Kolesnikov

EXACT: How to Train Your Accuracy

ICML 2022
Подробнее
Topology, Algebra, and Geometry in Machine Learning Workshop
Alexander Nikulin
Vladislav Kurenkov
Denis Tarasov
Dmitry Akimov
Sergey Kolesnikov

Q-Ensemble for Offline RL: Don't Scale the Ensemble, Scale the Batch Size

NeurIPS 2022
Подробнее
Offline RL Workshop
Dmitriy Akimov
Vladislav Kurenkov
Alexander Nikulin
Denis Tarasov
Sergey Kolesnikov

Let Offline RL Flow: Training Conservative Agents in the Latent Space of Normalizing Flows

NeurIPS 2022
Подробнее
Offline RL Workshop
Ivan Karpukhin
Stanislav Dereka
Sergey Kolesnikov

Probabilistic Embeddings Revisited

Preprint
Подробнее
Mark Rofin
Nikita Balagansky
Daniil Gavrilov

Linear Interpolation In Parameter Space is Good Enough for Fine-Tuned Language Models

Preprint
Подробнее
Образовательные услуги оказываются АНО ВО «Центральный университет», свидетельство № А007−115−77/1 039 609, 29 января 2024
Абитуриентам
Университет
Будьте в курсе первыми